3.224 \(\int \frac{\sqrt{a+a \sec (c+d x)}}{\sec ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=153 \[ \frac{12 a \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{2 a \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{32 a \sin (c+d x) \sqrt{\sec (c+d x)}}{35 d \sqrt{a \sec (c+d x)+a}}+\frac{16 a \sin (c+d x)}{35 d \sqrt{\sec (c+d x)} \sqrt{a \sec (c+d x)+a}} \]

[Out]

(2*a*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + (12*a*Sin[c + d*x])/(35*d*Sec[c + d*x]^
(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (16*a*Sin[c + d*x])/(35*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (32
*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(35*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.215677, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {3805, 3804} \[ \frac{12 a \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{2 a \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{32 a \sin (c+d x) \sqrt{\sec (c+d x)}}{35 d \sqrt{a \sec (c+d x)+a}}+\frac{16 a \sin (c+d x)}{35 d \sqrt{\sec (c+d x)} \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[c + d*x]]/Sec[c + d*x]^(7/2),x]

[Out]

(2*a*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + (12*a*Sin[c + d*x])/(35*d*Sec[c + d*x]^
(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (16*a*Sin[c + d*x])/(35*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (32
*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(35*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3805

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(a*Cot[
e + f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[(a*(2*n + 1))/(2*b*d*n), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sec (c+d x)}}{\sec ^{\frac{7}{2}}(c+d x)} \, dx &=\frac{2 a \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{6}{7} \int \frac{\sqrt{a+a \sec (c+d x)}}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{12 a \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{24}{35} \int \frac{\sqrt{a+a \sec (c+d x)}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{12 a \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{16 a \sin (c+d x)}{35 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{16}{35} \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{12 a \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{16 a \sin (c+d x)}{35 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{32 a \sqrt{\sec (c+d x)} \sin (c+d x)}{35 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.240278, size = 71, normalized size = 0.46 \[ \frac{(47 \cos (c+d x)+12 \cos (2 (c+d x))+5 \cos (3 (c+d x))+76) \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)}}{70 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[c + d*x]]/Sec[c + d*x]^(7/2),x]

[Out]

((76 + 47*Cos[c + d*x] + 12*Cos[2*(c + d*x)] + 5*Cos[3*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2]
)/(70*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.213, size = 90, normalized size = 0.6 \begin{align*} -{\frac{ \left ( 10\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}+2\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}+4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+16\,\cos \left ( dx+c \right ) -32 \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{35\,d\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x)

[Out]

-2/35/d*(5*cos(d*x+c)^4+cos(d*x+c)^3+2*cos(d*x+c)^2+8*cos(d*x+c)-16)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d
*x+c)^4*(1/cos(d*x+c))^(7/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.69414, size = 396, normalized size = 2.59 \begin{align*} \frac{\sqrt{2}{\left (105 \, \cos \left (\frac{6}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) \sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) + 35 \, \cos \left (\frac{4}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) \sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) + 7 \, \cos \left (\frac{2}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) \sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) - 105 \, \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) \sin \left (\frac{6}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) - 35 \, \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) \sin \left (\frac{4}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) - 7 \, \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) \sin \left (\frac{2}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) + 10 \, \sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ) + 7 \, \sin \left (\frac{5}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) + 35 \, \sin \left (\frac{3}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right ) + 105 \, \sin \left (\frac{1}{7} \, \arctan \left (\sin \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right ), \cos \left (\frac{7}{2} \, d x + \frac{7}{2} \, c\right )\right )\right )\right )} \sqrt{a}}{280 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

1/280*sqrt(2)*(105*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 35*cos(
4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 7*cos(2/7*arctan2(sin(7/2*d*x
+ 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 105*cos(7/2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x +
 7/2*c), cos(7/2*d*x + 7/2*c))) - 35*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x +
7/2*c))) - 7*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 10*sin(7/2*d*
x + 7/2*c) + 7*sin(5/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 35*sin(3/7*arctan2(sin(7/2*d*x +
 7/2*c), cos(7/2*d*x + 7/2*c))) + 105*sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*sqrt(a)/d

________________________________________________________________________________________

Fricas [A]  time = 1.6068, size = 238, normalized size = 1.56 \begin{align*} \frac{2 \,{\left (5 \, \cos \left (d x + c\right )^{4} + 6 \, \cos \left (d x + c\right )^{3} + 8 \, \cos \left (d x + c\right )^{2} + 16 \, \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{35 \,{\left (d \cos \left (d x + c\right ) + d\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

2/35*(5*cos(d*x + c)^4 + 6*cos(d*x + c)^3 + 8*cos(d*x + c)^2 + 16*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(
d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)